딥 러닝의 비밀을 파헤치는 새로운 이론

예루살렘 히브리 대학 (Hebrew University of Jerusalem)의 컴퓨터 과학자이자 물리학 교수인 티쉬비(Naftali Tishby)가 작년 베를린의 한 컨퍼런스에서 딥 러닝이 어떻게 작동 하는지를 설명하는 새로운 이론을 제시했다.

"deep learning is an information bottleneck procedure that compresses noisy data as much as possible while preserving information about what the data represent."

딥 러닝이란, 데이터의 노이즈는 줄이고 그것이 무엇을 표현 하는지에 대한 주요 정보만 남기는 정보 병목 (Information bottleneck) 절차라는 것이다.

정보 병목 기법 (Information bottleneck method) 은 두 랜덤변수의 결합확률분포가 주어진 경우, 두 변수 간의 상호 정보량을 최대한 보존하면서 한 변수를 압축하는 기법이다 (위키 참고 [1]).

위키에 Information theory of deep learning 섹션은 정리되다 말았지만, X가 실제 개 사진의 픽셀같은 복잡한 대량의 데이터 셋이고, Y가 “개”와 같이 그 데이터를 표현하는 단순한 변수라 가정해보자. 딥 러닝은 즉, Y의 정보를 최대한으로 보유하고 있는 X 의 축약된 표현을 구함으로써 일반화라는 목표에 도달하는 과정이라는 것이다.

내가 이 내용에 관심을 갖게 된 이유는, 딥 러닝 대부인 힌튼 교수께서 친히 티쉬비의 연구 결과에 찬사를 보냈다고 한다.

 “I have to listen to it another 10,000 times to really understand it, but it's very rare nowadays to hear a talk with a really original idea in it that may be the answer to a really major puzzle.”

한편으로 또한 재밌는 것은, 이 이론에 따르면 딥 러닝이 잘 할 수 있는 것과 못하는 것의 한계는 명백 해진다. 세부적인걸 포기하기 때문에 큰 수 곱셈이나 암호 코드 박살 내는건 잘 해내지 못할 거라고 한다 ㅋ.

우리 인간은 보고싶은 것만 본다. 세계로부터 전달되는 엄청난 정보의 대부분을 포기하고 정말로 보고 싶은 것만 보고 있는지 모르겠다.

1. https://en.wikipedia.org/wiki/Information_bottleneck_method

Comments

Popular posts from this blog

일본만화 추천 100선

구글링하는(googling) 방법

AWS re:Invent 2017 참관기